资源论文Learning under uncertainty: a comparison between R-W and Bayesian approach

Learning under uncertainty: a comparison between R-W and Bayesian approach

2020-02-05 | |  40 |   37 |   0

Abstract 

Accurately differentiating between what are truly unpredictably random and systematic changes that occur at random can have profound effect on affect and cognition. To examine the underlying computational principles that guide different learning behavior in an uncertain environment, we compared an R-W model and a Bayesian approach in a visual search task with different volatility levels. Both R-W model and the Bayesian approach reflected an individual’s estimation of the environmental volatility, and there is a strong correlation between the learning rate in R-W model and the belief of stationarity in the Bayesian approach in different volatility conditions. In a low volatility condition, R-W model indicates that learning rate positively correlates with lose-shift rate, but not choice optimality (inverted U shape). The Bayesian approach indicates that the belief of environmental stationarity positively correlates with choice optimality, but not lose-shift rate (inverted U shape). In addition, we showed that comparing to Expert learners, individuals with high lose-shift rate (sub-optimal learners) had significantly higher learning rate estimated from R-W model and lower belief of stationarity from the Bayesian model.

上一篇:Data driven estimation of Laplace-Beltrami operator

下一篇:Efficient and Robust Spiking Neural Circuit for Navigation Inspired by Echolocating Bats

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...