资源论文Efficient and Robust Spiking Neural Circuit for Navigation Inspired by Echolocating Bats

Efficient and Robust Spiking Neural Circuit for Navigation Inspired by Echolocating Bats

2020-02-05 | |  43 |   34 |   0

Abstract 

We demonstrate a spiking neural circuit for azimuth angle detection inspired by the echolocation circuits of the Horseshoe bat Rhinolophus ferrumequinum and utilize it to devise a model for navigation and target tracking, capturing several key aspects of information transmission in biology. Our network, using only a simple local-information based sensor implementing the cardioid angular gain function, operates at biological spike rate of approximately 10 Hz. The network tracks large angular targets (image.png ) within 1 sec with a 10% RMS error. We study the navigational ability of our model for foraging and target localization tasks in a forest of obstacles and show that it requires less than 200X spike-triggered decisions, while suffering less than 1% loss in performance compared to a proportional-integral-derivative controller, in the presence of 50% additive noise. Superior performance can be obtained at a higher average spike rate of 100 Hz and 1000 Hz, but even the accelerated networks require 20X and 10X lesser decisions respectively, demonstrating the superior computational efficiency of bio-inspired information processing systems.

上一篇:Learning under uncertainty: a comparison between R-W and Bayesian approach

下一篇:Sparse Support Recovery with Non-smooth Loss Functions

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...