资源论文Safe Exploration in Finite Markov Decision Processes with Gaussian Processes

Safe Exploration in Finite Markov Decision Processes with Gaussian Processes

2020-02-05 | |  60 |   36 |   0

Abstract 

In classical reinforcement learning agents accept arbitrary short term loss for long term gain when exploring their environment. This is infeasible for safety critical applications such as robotics, where even a single unsafe action may cause system failure or harm the environment. In this paper, we address the problem of safely exploring finite Markov decision processes (MDP). We define safety in terms of an a priori unknown safety constraint that depends on states and actions and satisfies certain regularity conditions expressed via a Gaussian process prior. We develop a novel algorithm, S AFE MDP, for this task and prove that it completely explores the safely reachable part of the MDP without violating the safety constraint. To achieve this, it cautiously explores safe states and actions in order to gain statistical confidence about the safety of unvisited state-action pairs from noisy observations collected while navigating the environment. Moreover, the algorithm explicitly considers reachability when exploring the MDP, ensuring that it does not get stuck in any state with no safe way out. We demonstrate our method on digital terrain models for the task of exploring an unknown map with a rover.

上一篇:R-FCN: Object Detection via Region-based Fully Convolutional Networks

下一篇:Adaptive Neural Compilation

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...