资源论文Adaptive Neural Compilation

Adaptive Neural Compilation

2020-02-05 | |  57 |   45 |   0

Abstract 

This paper proposes an adaptive neural-compilation framework to address the problem of learning efficient programs. Traditional code optimisation strategies used in compilers are based on applying pre-specified set of transformations that make the code faster to execute without changing its semantics. In contrast, our work involves adapting programs to make them more efficient while considering correctness only on a target input distribution. Our approach is inspired by the recent works on differentiable representations of programs. We show that it is possible to compile programs written in a low-level language to a differentiable representation. We also show how programs in this representation can be optimised to make them efficient on a target input distribution. Experimental results demonstrate that our approach enables learning specifically-tuned algorithms for given data distributions with a high success rate.

上一篇:Safe Exploration in Finite Markov Decision Processes with Gaussian Processes

下一篇:Dimensionality Reduction of Massive Sparse Datasets Using Coresets

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...