资源论文Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance

Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance

2020-02-14 | |  48 |   37 |   0

Abstract

 Applications of optimal transport have recently gained remarkable attention as a result of the computational advantages of entropic regularization. However, in most situations the Sinkhorn approximation to the Wasserstein distance is replaced by a regularized version that is less accurate but easy to differentiate. In this work we characterize the differential properties of the original Sinkhorn approximation, proving that it enjoys the same smoothness of its regularized version and we explicitly provide an efficient algorithm to compute its gradient. We show that this result benefits both theory and applications: on one hand, high order smoothness confers statistical guarantees to learning with Wasserstein approximations. On the other hand, the gradient formula is used to efficiently solve learning and optimization problems in practice. Promising preliminary experiments complement our analysis.

上一篇:Relating Leverage Scores and Density using Regularized Christoffel Functions

下一篇:Maximizing acquisition functions for Bayesian optimization

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...