资源论文Maximizing acquisition functions for Bayesian optimization

Maximizing acquisition functions for Bayesian optimization

2020-02-14 | |  40 |   39 |   0

Abstract

 Bayesian optimization is a sample-efficient approach to global optimization that relies on theoretically motivated value heuristics (acquisition functions) to guide its search process. Fully maximizing acquisition functions produces the Bayes’ decision rule, but this ideal is difficult to achieve since these functions are frequently non-trivial to optimize. This statement is especially true when evaluating queries in parallel, where acquisition functions are routinely non-convex, highdimensional, and intractable. We first show that acquisition functions estimated via Monte Carlo integration are consistently amenable to gradient-based optimization. Subsequently, we identify a common family of acquisition functions, including EI and UCB, whose properties not only facilitate but justify use of greedy approaches for their maximization.

上一篇:Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance

下一篇:Multi-Agent Generative Adversarial Imitation Learning

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...