资源论文Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence

Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence

2020-02-20 | |  49 |   32 |   0

Abstract

Deep neural networks have received dramatic success based on the optimization method of stochastic gradient descent (SGD). However, it is still not clear how to tune hyper-parameters, especially batch size and learning rate, to ensure good generalization. This paper reports both theoretical and empirical evidence of a training strategy that we should control the ratio of batch size to learning rate not too large to achieve a good generalization ability. Specifically, we prove a PAC-Bayes generalization bound for neural networks trained by SGD, which has a positive correlation with the ratio of batch size to learning rate. This correlation builds the theoretical foundation of the training strategy. Furthermore, we conduct a largescale experiment to verify the correlation and training strategy. We trained 1,600 models based on architectures ResNet-110, and VGG-19 with datasets CIFAR-10 and CIFAR-100 while strictly control unrelated variables. Accuracies on the test sets are collected for the evaluation. Spearman’s rank-order correlation coefficients and the corresponding p values on 164 groups of the collected data demonstrate that the correlation is statistically significant, which fully supports the training strategy.

上一篇:Practical Two-Step Look-Ahead Bayesian Optimization

下一篇:Understanding the Role of Momentum in Stochastic Gradient Methods

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...