资源论文Understanding the Role of Momentum in Stochastic Gradient Methods

Understanding the Role of Momentum in Stochastic Gradient Methods

2020-02-20 | |  61 |   44 |   0

Abstract

The use of momentum in stochastic gradient methods has become a widespread practice in machine learning. Different variants of momentum, including heavyball momentum, Nesterov’s accelerated gradient (NAG), and quasi-hyperbolic momentum (QHM), have demonstrated success on various tasks. Despite these empirical successes, there is a lack of clear understanding of how the momentum parameters affect convergence and various performance measures of different algorithms. In this paper, we use the general formulation of QHM to give a unified analysis of several popular algorithms, covering their asymptotic convergence conditions, stability regions, and properties of their stationary distributions. In addition, by combining the results on convergence rates and stationary distributions, we obtain sometimes counter-intuitive practical guidelines for setting the learning rate and momentum parameters.

上一篇:Control Batch Size and Learning Rate to Generalize Well: Theoretical and Empirical Evidence

下一篇:Chirality Nets for Human Pose Regression

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...