资源论文Learning with Marginalized Corrupted Features

Learning with Marginalized Corrupted Features

2020-03-02 | |  71 |   52 |   0

Abstract

The goal of machine learning is to develop predictors that generalize well to test data. Ideally, this is achieved by training on very large (infinite) training data sets that capture all variations in the data distribution. In the case of finite training data, an effective solution is to extend the training set with artificially created examples—which, however, is also computationally costly. We propose to corrupt training examples with noise from known distributions within the exponential family and present a novel learning algorithm, called marginalized corrupted features (MCF), that trains robust predictors by minimizing the expected value of the loss function under the corrupting distribution— essentially learning with infinitely many (corrupted) training examples. We show empirically on a variety of data sets that MCF classifiers can be trained efficiently, may generalize substantially better to test data, and are more robust to feature deletion at test time.

上一篇:Principal Component Analysis on non-Gaussian Dependent Data

下一篇:SADA: A General Framework to Support Robust Causation Discovery

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...