资源论文SADA: A General Framework to Support Robust Causation Discovery

SADA: A General Framework to Support Robust Causation Discovery

2020-03-02 | |  93 |   45 |   0

Abstract

Causality discovery without manipulation is considered a crucial problem to a variety of applications, such as genetic therapy. The state-of-the-art solutions, e.g. LiNGAM, return accurate results when the number of labeled samples is larger than the number of variables. These approaches are thus applicable only when large numbers of samples are available or the problem domain is sufficiently small. Motivated by the observations of the local sparsity properties on causal structures, we propose a general Split-andMerge strategy, named SADA, to enhance the scalability of a wide class of causality discovery algorithms. SADA is able to accurately identify the causal variables, even when the sample size is significantly smaller than the number of variables. In SADA, the variables are partitioned into subsets, by finding cuts on the sparse probabilistic graphical model over the variables. By running mainstream causation discovery algorithms, e.g. LiNGAM, on the subproblems, complete causality can be reconstructed by combining all the partial results. SADA benefits from the recursive division technique, since each small subproblem generates more accurate result under the same number of samples. We theoretically prove that SADA always reduces the scale of problems withProceedings of the 30 th International Conference on Machine Learning, Atlanta, Georgia, USA, 2013. JMLR: W&CP volume 28. Copyright 2013 by the author(s).

上一篇:Learning with Marginalized Corrupted Features

下一篇:Fast Max-Margin Matrix Factorization with Data Augmentation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...