资源论文Normalized Gradient Vector Diffusion and Image Segmentation

Normalized Gradient Vector Diffusion and Image Segmentation

2020-03-23 | |  58 |   44 |   0

Abstract

In this paper, we present an approach for image segmen- tation, based on the existing Active Snake Model and Watershed-based Region Merging. Our algorithm includes initial segmentation using Normalized Gradient Vector Diffusion (NGVD) and region merging based on Region Adjacency Graph (RAG). We use a set of heat difiusion equations to generate a vector field over the image domain, which provides us with a natural way to define seeds as well as an external force to attract the active snakes. Then an initial segmentation of the original image can be obtained by a similar idea as seen in active snake model. Finally an RAG-based region merging technique is used to find the true segmentation as desired. The experimental results show that our NGVD-based region merging algorithm overcomes some problems as seen in classic active snake model. We will also see that our NGVD has several advantages over the traditional gradient vector diffusion.

上一篇:Toward a Full Probability Model of Edges in Natural Images

下一篇:Spectral Partitioning with Indefinite Kernels Using the Nystr¨om Extension

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • dynamical system ...

    allows to preform manipulations of heavy or bul...

  • The Variational S...

    Unlike traditional images which do not offer in...