资源论文Defocus Blur Detection via Multi-Stream Bottom-Top-Bottom Fully Convolutional Network

Defocus Blur Detection via Multi-Stream Bottom-Top-Bottom Fully Convolutional Network

2019-10-17 | |  80 |   40 |   0
Abstract Defocus blur detection (DBD) is the separation of infocus and out-of-focus regions in an image. This process has been paid considerable attention because of its remarkable potential applications. Accurate differentiation of homogeneous regions and detection of low-contrast focal regions, as well as suppression of background clutter, are challenges associated with DBD. To address these issues, we propose a multi-stream bottom-top-bottom fully convolutional network (BTBNet), which is the first attempt to develop an end-to-end deep network for DBD. First, we develop a fully convolutional BTBNet to integrate low-level cues and high-level semantic information. Then, considering that the degree of defocus blur is sensitive to scales, we propose multi-stream BTBNets that handle input images with different scales to improve the performance of DBD. Finally, we design a fusion and recurrent reconstruction network to recurrently refine the preceding blur detection maps. To promote further study and evaluation of the DBD models, we construct a new database of 500 challenging images and their pixel-wise defocus blur annotations. Experimental results on the existing and our new datasets demonstrate that the proposed method achieves significantly better performance than other state-of-the-art algorithms

上一篇:DeepVoting: A Robust and Explainable Deep Network for Semantic Part Detection under Partial Occlusion

下一篇:Densely Connected Pyramid Dehazing Network

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...