资源论文Densely Connected Pyramid Dehazing Network

Densely Connected Pyramid Dehazing Network

2019-10-17 | |  77 |   59 |   0
Abstract We propose a new end-to-end single image dehazing method, called Densely Connected Pyramid Dehazing Network (DCPDN), which can jointly learn the transmission map, atmospheric light and dehazing all together. The endto-end learning is achieved by directly embedding the atmospheric scattering model into the network, thereby ensuring that the proposed method strictly follows the physics-driven scattering model for dehazing. Inspired by the dense network that can maximize the information flow along features from different levels, we propose a new edge-preserving densely connected encoder-decoder structure with multilevel pyramid pooling module for estimating the transmission map. This network is optimized using a newly introduced edge-preserving loss function. To further incorporate the mutual structural information between the estimated transmission map and the dehazed result, we propose a joint-discriminator based on generative adversarial network framework to decide whether the corresponding dehazed image and the estimated transmission map are real or fake. An ablation study is conducted to demonstrate the effectiveness of each module evaluated at both estimated transmission map and dehazed result. Extensive experiments demonstrate that the proposed method achieves significant improvements over the state-of-theart methods. Code and dataset is made available at: https://github.com/hezhangsprinter/DCPDN

上一篇:Defocus Blur Detection via Multi-Stream Bottom-Top-Bottom Fully Convolutional Network

下一篇:Detail-Preserving Pooling in Deep Networks

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Shape-based Autom...

    We present an algorithm for automatic detection...