资源论文OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas.

OmniDepth: Dense Depth Estimation for Indoors Spherical Panoramas.

2019-10-24 | |  44 |   39 |   0
Abstract. Recent work on depth estimation up to now has only focused on projective images ignoring 360o content which is now increasingly and more easily produced. We show that monocular depth estimation models trained on traditional images produce sub-optimal results on omnidirectional images, showcasing the need for training directly on 360o datasets, which however, are hard to acquire. In this work, we circumvent the challenges associated with acquiring high quality 360o datasets with ground truth depth annotations, by re-using recently released large scale 3D datasets and re-purposing them to 360o via rendering. This dataset, which is considerably larger than similar projective datasets, is publicly offered to the community to enable future research in this direction. We use this dataset to learn in an end-to-end fashion the task of depth estimation from 360o images. We show promising results in our synthesized data as well as in unseen realistic images

上一篇:Deep Imbalanced Attribute Classification using Visual Attention Aggregation

下一篇:ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...