资源论文Modality Distillation with Multiple Stream Networks for Action Recognition

Modality Distillation with Multiple Stream Networks for Action Recognition

2019-10-24 | |  50 |   39 |   0
Abstract. Diverse input data modalities can provide complementary cues for several tasks, usually leading to more robust algorithms and better performance. However, while a (training) dataset could be accurately designed to include a variety of sensory inputs, it is often the case that not all modalities are available in real life (testing) scenarios, where a model has to be deployed. This raises the challenge of how to learn robust representations leveraging multimodal data in the training stage, while considering limitations at test time, such as noisy or missing modalities. This paper presents a new approach for multimodal video action recognition, developed within the unified frameworks of distillation and privileged information, named generalized distillation. Particularly, we consider the case of learning representations from depth and RGB videos, while relying on RGB data only at test time. We propose a new approach to train an hallucination network that learns to distill depth features through multiplicative connections of spatiotemporal representations, leveraging soft labels and hard labels, as well as distance between feature maps. We report state-of-the-art results on video action classification on the largest multimodal dataset available for this task, the NTU RGB+D, as well as on the UWA3DII and Northwestern-UCLA

上一篇:ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design

下一篇:WildDash - Creating Hazard-Aware Benchmarks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...