资源论文Multi-Scale Spatially-Asymmetric Recalibration for Image Classification

Multi-Scale Spatially-Asymmetric Recalibration for Image Classification

2019-10-24 | |  55 |   41 |   0
Abstract. Convolution is spatially-symmetric, i.e., the visual features are independent of its position in the image, which limits its ability to utilize contextual cues for visual recognition. This paper addresses this issue by introducing a recalibration process, which refers to the surrounding region of each neuron, computes an importance value and multiplies it to the original neural response. Our approach is named multi-scale spatially-asymmetric recalibration (MS-SAR), which extracts visual cues from surrounding regions at multiple scales, and designs a weighting scheme which is asymmetric in the spatial domain. MS-SAR is implemented in an efficient way, so that only small fractions of extra parameters and computations are required. We apply MS-SAR to several popular building blocks, including the residual block and the densely-connected block, and demonstrate its superior performance in both CIFAR and ILSVRC2012 classification tasks

上一篇:Deep Attention Neural Tensor Network for Visual Question Answering

下一篇:Conditional Prior Networks for Optical Flow

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...