资源论文Conditional Prior Networks for Optical Flow

Conditional Prior Networks for Optical Flow

2019-10-24 | |  39 |   31 |   0
Abstract. Classical computation of optical flow involves generic priors (regularizers) that capture rudimentary statistics of images, but not long-range correlations or semantics. On the other hand, fully supervised methods learn the regularity in the annotated data, without explicit regularization and with the risk of overfitting. We seek to learn richer priors on the set of possible flows that are statistically compatible with an image. Once the prior is learned in a supervised fashion, one can easily learn the full map to infer optical flow directly from two or more images, without any need for (additional) supervision. We introduce a novel architecture, called Conditional Prior Network (CPN), and show how to train it to yield a conditional prior. When used in conjunction with a simple optical flow architecture, the CPN beats all variational methods and all unsupervised learning-based ones using the same data term. It performs comparably to fully supervised ones, that however are fine-tuned to a particular dataset. Our method, on the other hand, performs well even when transferred between datasets. Code is available at: https://github.com/YanchaoYang/Conditional-Prior-Networks

上一篇:Multi-Scale Spatially-Asymmetric Recalibration for Image Classification

下一篇:How Local is the Local Diversity? Reinforcing Sequential Determinantal Point Processes with Dynamic Ground Sets for Supervised Video Summarization

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...