资源论文Data-Driven Sparse Structure Selection for Deep Neural Networks

Data-Driven Sparse Structure Selection for Deep Neural Networks

2019-10-25 | |  57 |   51 |   0
Abstract. Deep convolutional neural networks have liberated its extraordinary power on various tasks. However, it is still very challenging to deploy stateof-the-art models into real-world applications due to their high computational complexity. How can we design a compact and effective network without massive experiments and expert knowledge? In this paper, we propose a simple and effective framework to learn and prune deep models in an end-to-end manner. In our framework, a new type of parameter – scaling factor is first introduced to scale the outputs of specific structures, such as neurons, groups or residual blocks. Then we add sparsity regularizations on these factors, and solve this optimization problem by a modified stochastic Accelerated Proximal Gradient (APG) method. By forcing some of the factors to zero, we can safely remove the corresponding structures, thus prune the unimportant parts of a CNN. Comparing with other structure selection methods that may need thousands of trials or iterative fine-tuning, our method is trained fully end-to-end in one training pass without bells and whistles. We evaluate our method, Sparse Structure Selection with several state-of-the-art CNNs, and demonstrate very promising results with adaptive depth and width selection. Code is available at: https://github.com/huangzehao/ sparse-structure-selection.

上一篇:Bi-Real Net: Enhancing the Performance of 1-bit CNNs With Improved Representational Capability and Advanced Training Algorithm

下一篇:DetNet: Design Backbone for Object Detection

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...