资源论文DetNet: Design Backbone for Object Detection

DetNet: Design Backbone for Object Detection

2019-10-25 | |  59 |   38 |   0
Abstract. Recent CNN based object detectors, either one-stage methods like YOLO, SSD, and RetinaNet, or two-stage detectors like Faster R-CNN, R-FCN and FPN, are usually trying to directly finetune from ImageNet pre-trained models designed for the task of image classification. However, there has been little work discussing the backbone feature extractor specifically designed for the task of object detection. More importantly, there are several differences between the tasks of image classification and object detection. (i) Recent object detectors like FPN and RetinaNet usually involve extra stages against the task of image classi- fication to handle the objects with various scales. (ii) Object detection not only needs to recognize the category of the object instances but also spatially locate them. Large downsampling factors bring large valid receptive field, which is good for image classification, but compromises the object location ability. Due to the gap between the image classification and object detection, we propose DetNet in this paper, which is a novel backbone network specifically designed for object detection. Moreover, DetNet includes the extra stages against traditional backbone network for image classification, while maintains high spatial resolution in deeper layers. Without any bells and whistles, state-of-the-art results have been obtained for both object detection and instance segmentation on the MSCOCO benchmark based on our DetNet (4.8G FLOPs) backbone. Codes will be released

上一篇:Data-Driven Sparse Structure Selection for Deep Neural Networks

下一篇:HybridFusion: Real-Time Performance Capture Using a Single Depth Sensor and Sparse IMUs

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...