资源论文Improving Resource Allocation Strategy Against Human Adversaries in Security Games

Improving Resource Allocation Strategy Against Human Adversaries in Security Games

2019-11-12 | |  99 |   80 |   0
Abstract Recent real-world deployments of Stackelberg security games make it critical that we address human adversaries’ bounded rationality in computing optimal strategies. To that end, this paper provides three key contributions: (i) new ef?cient algorithms for computing optimal strategic solutions using Prospect Theory and Quantal Response Equilibrium; (ii) the most comprehensive experiment to date studying the effectiveness of different models against human subjects for security games; and (iii) new techniques for generating representative payoff structures for behavioral experiments in generic classes of games. Our results with human subjects show that our new techniques outperform the leading contender for modeling human behavior in security games.

上一篇:An Ef?cient Monte-Carlo Algorithm for Pricing Combinatorial Prediction Markets for Tournaments

下一篇:Continuous Time Planning for Multiagent Teams with Temporal Constraints

用户评价
全部评价

热门资源

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...